
POSTER: DetectingWebAssembly-based Cryptocurrency Mining
Weikang Bian

Chinese University of Hong Kong
wkbian@cse.cuhk.edu.hk

Wei Meng
Chinese University of Hong Kong

wei@cse.cuhk.edu.hk

Yi Wang
Southern University of Science and

Technology
wy@ieee.org

ABSTRACT
In-browser cryptojacking is an emerging threat to web users. The
attackers can abuse the users’ computation resources to perform
cryptocurrency mining without obtaining their consent. Moreover,
the new web feature –WebAssembly (Wasm)– enables efficient in-
browser cryptocurrency mining and has been commonly used in
mining applications. In this work, we use the dynamic Wasm in-
struction execution trace to model the behavior of different Wasm
applications. We observe that the cryptocurrency mining Wasm
programs exhibit very different execution traces from other Wasm
programs (e.g., games). Based on our findings, we propose a novel
browser-basedmethodology to detect in-browserWasm-based cryp-
tojacking.

CCS CONCEPTS
• Security and privacy → Browser security; Malware and its
mitigation.

KEYWORDS
WebAssembly; Cryptojacking; Cryptocurrency mining

ACM Reference Format:
Weikang Bian,WeiMeng, and YiWang. 2019. POSTER: DetectingWebAssembly-
based Cryptocurrency Mining. In 2019 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’19), November 11–15, 2019, London,
United Kingdom. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3319535.3363287

1 INTRODUCTION
In-browser cryptocurrency mining draws increasing attention from
cybercriminals for the rising value of cryptocurrencies [7]. Accord-
ing to a report from Cyber Threat Alliance in 2018 [1], there had
been a 459 percent increase in illicit cryptocurrency mining mal-
ware detection since 2017. Several studies have shown that website
owners deploy cryptocurrencymining code for extra profit [3, 9, 11].
Many websites do not obtain any consent from the users before
running the mining code. Such malicious practice is called crypto-
jacking, which is often implemented using WebAssembly (Wasm)
for its great computation efficiency. Recently, researchers have
started to investigate cryptojacking in the wild [2, 8] and proposed
several detection strategies [4–6, 10].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6747-9/19/11.
https://doi.org/10.1145/3319535.3363287

In this work, we aim to detect in-browser Wasm-based crypto-
jacking, where a website automatically starts the cryptocurrency
mining procedure after it is loaded. We assume that a remote at-
tacker controls the website that a victim user may visit. Thus the
attacker can execute arbitrary JavaScript code and Wasm code in
the victim user’s browser. The attacker uses the JavaScript code
to manage the in-browser mining tasks and communicate with a
remote server to submit the mining results and request for new
tasks. The Wasm code is mainly used for cryptocurrency mining
which is computationally intensive.

We further assume that the attacker may leverage various tech-
niques to evade the existing detection methods. One of the most
commonly used techniques is code obfuscation. In other words,
simply computing a code signature is not reliable to identify a min-
ing script. Methods that use the function names to build a script
signature are also likely to be bypassed. Furthermore, the attacker
may apply throttling mechanism on the number of mining threads
or the mining speed, to circumvent detection methods that monitor
CPU usage. Finally, the attacker may communicate with his/her
own custom servers instead of the servers of publicly knownmining
service providers to bypass detection methods which rely on match-
ing the hostnames of WebSocket or XHR communication targets in
some community-maintained public blacklists (e.g., NoCoin).

To reliably identify Wasm-based cryptojacking code, we have
to find other behavioral/semantic features that can well represent
the nature of the mining activities. In this work, we study and
propose to use the subsequences of Wasm instruction execution
trace as a signature to identify Wasm programs running a known
cryptocurrency mining algorithm.

2 METHODOLOGY
In this section, we present a new approach to dynamically detect-
ing in-browser cryptojacking behavior. We focus on the websites
that use Wasm to perform cryptocurrency mining on the user’s
device, because Wasm offers great performance and is platform
independent.

We first describe how we model the behavior of Wasm programs
using the subsequences of Wasm instruction execution trace (§2.1).
Then we discuss how we leverage the model to detect in-browser
Wasm-based cryptojacking (§2.2).

2.1 Modeling Wasm Program Behavior
In this section, we investigate the feasibility of using the Wasm
instruction execution trace to model the behavior of Wasm programs,
and to differentiate a cryptocurrency mining Wasm program from
other benign Wasm programs. Intuitively, one can use the full trace
to model a program. However, it is not practical because a program
may not always generate the same trace in multiple runs. Therefore,

https://doi.org/10.1145/3319535.3363287
https://doi.org/10.1145/3319535.3363287
https://doi.org/10.1145/3319535.3363287


Rank
CryptoLoot Tanks

Inst. Sequences Percentage Inst. Sequences Percentage
1 add xor shl add xor 11.20% shl shr_s eqz shl shr_s 4.90%
2 shl add xor shl add 11.20% shl shr_s add shl shr_s 3.97%
3 xor shl add xor xor 5.60% shr_s add shl shr_s ne 3.91%
4 xor shl add xor shl 5.60% shr_s eqz shl shr_s add 3.83%
5 add shl add xor shl 4.56% eqz shl shr_s add shl 3.83%
6 shl add shl add xor 4.56% add shl shr_s eqz shl 3.83%
7 xor xor add shl add 3.11% add shl shr_s ne or 3.83%
8 shl add xor xor add 3.11% add add add add add 3.08%
9 add xor xor add shl 3.11% shl shr_s shl shr_s eq 2.45%
10 add shl add shl add 2.07% add gt_u add gt_u or 2.43%

Table 1: The frequency distribution of top instructions of Cryp-
toLoot and Tanks.

we try to determine if the subsequences of the trace can be used as
a distinguishing feature to model the program behavior.

We collect and compare the Wasm instruction execution traces
of several different Wasm-based web applications with a custom
Chromiumbrowser. In particular, we set a small slidingwindow/group
of consecutive numeric instructions1. We denote Ninst as the size
of the sliding window. We terminate a sliding window at a control
instruction to ensure that the instructions within the window are
always executed consecutively.

We present the frequency distribution of the top 10 subsequences
(groups) of https://crypto-loot.org/ – a popular cryptocurrency min-
ing service provider, and https://webassembly.org/demo/Tanks/ –
a web tank battling game developed in Wasm and Unity WebGL,
in Table 1. Specifically, we set Ninst to 5. It is obvious that the top
instruction subsequences of the two applications are quite distinct.
We also draw the accumulate frequency distribution of the top 10
instruction groups over time of the two applications in Figure 1
and Figure 2, respectively. The Y axis represents the accumulate
percentage of each group of Wasm instructions out of the 10 groups.
We vary the size of the instruction trace in the X axis to demon-
strate how the distribution may change over time. On the one hand,
the distribution of Tanks does change over time. On the other hand,
as expected, we observe a very stable distribution for CryptoLoot,
which had to repetitively calculate the proof of work for cryptocur-
rency mining. This suggests that the distribution of the top groups
of Ninst instructions is potentially a good feature to represent the
runtime behavior of Wasm programs and to differentiate between
different Wasm programs.

2.2 Detecting Cryptocurrency Mining
Programs

As we observed in §2.1, the frequency distribution of the top instruc-
tion groups of CryptoLoot is very stable over time. We thus check
in runtime if another Wasm program exhibits a very similar dis-
tribution. Nevertheless, as is evident in Figure 1, the accumulative
distribution is not always constant over time.

To capture potential variation of the mining activities and to
enable fast detection, we calculate the frequency distribution of
the top Nдroup groups of Ninst instructions of a mining sample

1http://webassembly.github.io/spec/core/binary/instructions.html

100 200 300 400 500
Trace Size / MB

0

20

40

60

80

100

Pe
rc

en
ta

ge

Top 1
Top 2
Top 3
Top 4
Top 5
Top 6
Top 7
Top 8
Top 9
Top 10

Figure 1: The frequency distribution of top instructions of Cryp-
toLoot.

100 200 300 400 500
Trace Size / MB

0

20

40

60

80

100

Pe
rc

en
ta

ge

Top 1
Top 2
Top 3
Top 4
Top 5
Top 6
Top 7
Top 8
Top 9
Top 10

Figure 2: The frequency distribution of top instructions of Tanks.

program’s trace in many different sequence intervals. The distri-
bution in each interval indicates the temporal mining speed. We
then compute a baseline average distribution that represents the
average mining speed of the sample mining program.

At runtime, we would compute in the same interval, which we
call the detection interval, a distribution of the same top Nдroup
groups of instructions of a Wasm thread. We then calculate its
cosine similarity score – score – with the baseline distribution. If
the score is close to 1, it is very likely that the thread is executing
similar code in that interval. We use a parameterTc as the threshold
for comparing the similarity.

It is possible that a non-mining thread executes the same code
very shortly in the detection interval and then becomes inactive.
Therefore, instead of using the percentage to calculate the distri-
bution, we use the number of executed instructions divided by the
detection interval to represent the mining speed. Further, we would
compare the calculated mining speed – speed – with that of the
baseline speed – S . We would make a negative decision if the mining
speed is much smaller than the baseline speed. Specifically, we ob-
tain the standard deviation σ when calculating the baseline average
speed. We use a parameter Tσ to control the absolute detection
distance from the baseline speed. A positive decision is made if the
following inequality is true. We will discuss how to determine the
parameters Nдroup and Ninst next.

score ≥ Tc ∧ s ≥ S −Tσσ (1)

2.2.1 Studying parameters Nдroup and Ninst . We experiment with
different settings of Nдroup and Ninst to study the overhead and
accuracy of our method on a small-scale training set. For simplicity,
we use another mining program as the positive case and the Tank
game as the negative case.

https://crypto-loot.org/
https://webassembly.org/demo/Tanks/


1 3 5 7 9
Ngroup

0

5

10

15

20

25

30

C
PU

O
ve

rh
ea

d
/%

Ninst = 1
Ninst = 3
Ninst = 5
Ninst = 7
Ninst = 9

Figure 3: The overhead for the positive case.

1 3 5 7 9
Ngroup

0

5

10

15

20

25

30

C
PU

O
ve

rh
ea

d
/% Ninst = 1

Ninst = 3
Ninst = 5
Ninst = 7
Ninst = 9

Figure 4: The overhead for the negative case.

To count an occurrence of the top Ninst instructions, we need
to insert four extra profiling instructions to the Wasm. We enable
the Linux-perf feature to dump the per-thread executed instruction
numbers to measure the overhead, which is the ratio of additional
instructions executed in a fixed CPU time. As is shown in Figure 3,
the overhead decreases significantly as Ninst increases or Nдroup
decreases for the positive case. For the negative case (Figure 4), the
overhead is very limited if we select a larger Ninst .

Table 2: The similarity score of the positive case.

Ninst

score Nдroup
1 3 5 7 9

1 0.930 0.947 0.943 0.946 0.930
3 0.930 0.928 0.941 0.945 0.930
5 0.935 0.929 0.929 0.947 0.933
7 0.932 0.948 0.937 0.933 0.934
9 0.934 0.939 0.948 0.928 0.935

Table 3: The similarity score of the negative case.

Ninst

score Nдroup
1 3 5 7 9

1 1.000 0.716 0.760 0.754 0.753
3 1.000 0.519 0.558 0.542 0.534
5 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000

We present the similarity scores of the positive case and neg-
ative case in Table 2 and Table 3, respectively. We found that as
long as both Ninst and Nдroup are larger than 3, we could get rela-
tively good detection performance in this small-scale experiment.
Thus, we think the method can potentially perform well in de-
tecting Wasm programs running a known cryptocurrency mining
algorithm.

3 EVALUATION
Weperformed a preliminary experiment onAlexa top 100Kwebsites
using our modified browser in June 2019. We found 87 websites
that included as least one Wasm script. Four websites were detected
by our method as cryptojacking websites, which leveraged the
same mining algorithm as CryptoLoot. We manually checked all
the 87 Wasm websites and confirmed our detection was accurate.
Further, we did not have any false negative websites, i.e., there
was no other website running the CryptoLoot mining algorithm.
Our results indicate that the subsequences of Wasm instruction
execution trace is potentially a reliable feature to identify similar
Wasm cryptojacking programs.

4 DISCUSSION AND FUTUREWORK
We evaluated the preliminary method of using the subsequences of
Wasm instruction execution traces to detect Wasm cryptojacking
programs. We have shown that the frequency distribution of the top
instruction groups can well represent the intrinsic mining behavior
of aWasm program. However, our approachmay not be obfuscation-
robust, although Wasm obfuscation is not widely observed yet. For
instance, the attacker may inject extra instructions, reverse the
order of instructions, or break a basic block into multiple smaller
ones to bypass our detection. We aim to improve our methodology
against possible Wasm obfuscation attacks in our future work.

ACKNOWLEDGMENT
The work described in this paper was partly supported by a grant
from the Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China (CUHK 24209418).

REFERENCES
[1] 2018. THE ILLICIT CRYPTOCURRENCY MINING THREAT. https:

//www.cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-
CryptoMining-Whitepaper.pdf.

[2] Shayan Eskandari, Andreas Leoutsarakos, Troy Mursch, and Jeremy Clark. 2018.
A first look at browser-based Cryptojacking. In 2018 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW). IEEE, 58–66.

[3] Guardian. 2018. https://www.theguardian.com/technology/2017/sep/27/pirate-
bay-showtime-ads-websites-electricity-pay-bills-cryptocurrency-bitcoin.

[4] Geng Hong, Zhemin Yang, Sen Yang, Lei Zhang, Yuhong Nan, Zhibo Zhang, Min
Yang, Yuan Zhang, Zhiyun Qian, and Haixin Duan. 2018. How you get shot in the
back: A systematical study about cryptojacking in the real world. In Proceedings
of the 25th ACM Conference on Computer and Communications Security (CCS).
Toronto, Canada.

[5] Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua Mason, Andrew
Miller, Nikita Borisov, Manos Antonakakis, and Michael Bailey. 2019. Outguard:
Detecting In-Browser Covert Cryptocurrency Mining in the Wild. In Proceedings
of the The Web Conference (WWW). San Francisco, CA.

[6] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy, Martina
Lindorfer, Christopher Kruegel, Herbert Bos, and Giovanni Vigna. 2018.
Minesweeper: An in-depth look into drive-by cryptocurrency mining and its
defense. In Proceedings of the 25th ACM Conference on Computer and Communi-
cations Security (CCS). Toronto, Canada.

[7] Hon Lau. 2017. Browser-based cryptocurrency mining makes unexpected return
from the dead. Sympantec Threat Intelligence (2017).

[8] Jan Rüth, Torsten Zimmermann, Konrad Wolsing, and Oliver Hohlfeld. 2018. Dig-
ging into browser-based cryptomining. In Proceedings of the Internet Measurement
Conference 2018. ACM, 70–76.

[9] TrendMicro. 2018. https://blog.trendmicro.com/trendlabs-security-
intelligence/malvertising-campaignabuses-googles-doubleclick-to-deliver-
cryptocurrency-miners/.

[10] Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu, Kevin W Hamlen, and Shuang
Hao. 2018. Seismic: Secure in-lined script monitors for interrupting cryptojacks.
In European Symposium on Research in Computer Security. Springer, 122–142.

[11] Mark Ward. 2018. http://www.bbc.com/news/technology-41518351.

https://www.cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-CryptoMining-Whitepaper.pdf
https://www.cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-CryptoMining-Whitepaper.pdf
https://www.cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-CryptoMining-Whitepaper.pdf
https://www.theguardian.com/technology/2017/sep/27/pirate-bay-showtime-ads-websites-electricity-pay-bills-cryptocurrency-bitcoin
https://www.theguardian.com/technology/2017/sep/27/pirate-bay-showtime-ads-websites-electricity-pay-bills-cryptocurrency-bitcoin
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaignabuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaignabuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaignabuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
http://www.bbc.com/news/technology-41518351

	Abstract
	1 Introduction
	2 Methodology
	2.1 Modeling Wasm Program Behavior
	2.2 Detecting Cryptocurrency Mining Programs

	3 Evaluation
	4 Discussion and Future Work
	References

